Abstract

We evaluated the blood flow within the downstream aortic false lumen after frozen elephant trunk repair for acute aortic dissection and identified hemodynamic predictors of false lumen expansion and negative false lumen remodeling using four-dimensional flow magnetic resonance imaging. Thirty-one patients (Stanford type A, n = 28; Stanford type B, n = 3) with patent false lumen who underwent frozen elephant trunk procedures for acute aortic dissection were included in this observational study. Each patient underwent computed tomography during the follow-up period and four-dimensional flow magnetic resonance imaging within 3 postoperative months. The false lumen volumetric expansion rate was calculated using computed tomography data. The direction and the rate of flow in the lower descending aortic false lumen were analyzed. Negative false lumen remodeling was defined as a volumetric increase of > 10% from the baseline volume. Negative false lumen remodeling had developed in 6 of the 31 patients during the observation period. Most of the false lumen flows were biphasic during systole. The range between peak and nadir flow rates was associated with the false lumen volumetric expansion rate (β coefficient = 6.77; p < 0.01, R2 = 0.43). The range between peak and nadir flow rates may serve as a hemodynamic predictor of negative false lumen remodeling, enabling further treatment for patients at risk of expansion in the downstream aorta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.