Abstract
BackgroundPatients with heart failure and left bundle branch block (LBBB) may receive cardiac resynchronization therapy (CRT), but current selection criteria are imprecise, and many patients have limited treatment response. Hemodynamic forces (HDF) have been suggested as a marker for CRT response. The aim of this study was therefore to investigate left ventricular (LV) HDF as a predictive marker for LV remodeling after CRT. MethodsPatients with heart failure, EF < 35% and LBBB (n = 22) underwent CMR with 4D flow prior to CRT. LV HDF were computed in three directions using the Navier–Stokes equations, reported in median N [interquartile range], and the ratio of transverse/longitudinal HDF was calculated for systole and diastole. Transthoracic echocardiography was performed before and 6 months after CRT. Patients with end-systolic volume reduction ≥ 15% were defined as responders. ResultsNon-responders had smaller HDF than responders in the inferior-anterior direction in systole (0.06 [0.03] vs. 0.07 [0.03], p = 0.04), and in the apex-base direction in diastole (0.09 [0.02] vs. 0.1 [0.05], p = 0.047). Non-responders had larger diastolic HDF ratio compared to responders (0.89 vs. 0.67, p = 0.004). ROC analysis of diastolic HDF ratio for identifying CRT non-responders had AUC of 0.88 (p = 0.005) with sensitivity 57% and specificity 100% for ratio > 0.87. Intragroup comparison found higher HDF ratio in systole compared to diastole for responders (p = 0.003), but not for non-responders (p = 0.8). ConclusionHemodynamic force ratio is a potential marker for identifying patients with heart failure and LBBB who are unlikely to benefit from CRT. Larger-scale studies are required before implementation of HDF analysis into clinical practice. Graphical Abstract [Display omitted]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.