Abstract

Lactic acidosis is a very common biological issue for shock patients. Experimental data clearly demonstrate that metabolic acidosis, including lactic acidosis, participates in the reduction of cardiac contractility and in the vascular hyporesponsiveness to vasopressors through various mechanisms. However, the contributions of each mechanism responsible for these deleterious effects have not been fully determined and their respective consequences on organ failure are still poorly defined, particularly in humans. Despite some convincing experimental data, no clinical trial has established the level at which pH becomes deleterious for hemodynamics. Consequently, the essential treatment for lactic acidosis in shock patients is to correct the cause. It is unknown, however, whether symptomatic pH correction is beneficial in shock patients. The latest Surviving Sepsis Campaign guidelines recommend against the use of buffer therapy with pH ≥7.15 and issue no recommendation for pH levels <7.15. Furthermore, based on strong experimental and clinical evidence, sodium bicarbonate infusion alone is not recommended for restoring pH. Indeed, bicarbonate induces carbon dioxide generation and hypocalcemia, both cardiovascular depressant factors. This review addresses the principal hemodynamic consequences of shock-associated lactic acidosis. Despite the lack of formal evidence, this review also highlights the various adapted supportive therapy options that could be putatively added to causal treatment in attempting to reverse the hemodynamic consequences of shock-associated lactic acidosis.

Highlights

  • Shock was recently redefined as a clinical state of acute circulatory failure with inadequate oxygen utilization and/or delivery by the cells resulting in cellular dysoxia/ hypoxia [1]

  • This review focuses only on the hemodynamic consequences of severe lactic acidosis with appropriate response of the ventilatory system; that is, pH 5 mmol.l−1

  • A recent study on isolated human ventricular trabeculae showed that a mild metabolic acidosis, including lactic acidosis, reduced both contractility and beta-adrenergic response to isoproterenol (NOAM) [39]

Read more

Summary

Introduction

Shock was recently redefined as a clinical state of acute circulatory failure with inadequate oxygen utilization and/or delivery by the cells resulting in cellular dysoxia/ hypoxia [1]. Numerous studies have assessed the cardiovascular consequences of severe metabolic acidosis, including lactic acidosis. These experimental studies demonstrated that severe metabolic acidosis worsens cardiovascular function [9,10] by exacerbating myocardial dysfunction and hyporesponsiveness to vasopressors [11]. The number of relevant and published studies centered on the effects of acidosis induced by an accumulation of extracellular lactate reducing SID and lowering extracellular pH by proton generation is somewhat limited.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.