Abstract

Aortic valve bypass (AVB) has been shown to be a viable solution for patients with severe aortic stenosis (AS). Under this circumstance, the left ventricle (LV) has a double outlet. The objective was to develop a mathematical model capable of evaluating the hemodynamic performance following the AVB surgery. A mathematical model that captures the interaction between LV, AS, arterial system, and AVB was developed. This model uses a limited number of parameters that all can be non-invasively measured using patient data. The model was validated using in vivo data from the literature. The model was used to determine the effect of different AVB and AS configurations on flow proportion and pressure of the aortic valve and the AVB. Results showed that the AVB leads to a significant reduction in transvalvular pressure gradient. The percentage of flow through the AVB can range from 55.47% to 69.43% following AVB with a severe AS. LV stroke work was also significantly reduced following the AVB surgery and reached a value of around 1.2 J for several AS severities. Findings of this study suggest: 1) the AVB leads to a significant reduction in transvalvular pressure gradients; 2) flow distribution between the AS and the AVB is significantly affected by the conduit valve size; 3) the AVB leads to a significant reduction in LV stroke work; and 4) hemodynamic performance variations can be estimated using the model.

Highlights

  • Aortic stenosis (AS) is the most common valvular disease in the elderly population

  • The key findings of this study are the followings: 1) the AVB leads to a significant reduction in transvalvular pressure gradient; 2) the conduit valve size, compared to the conduit size, has more effect on flow distribution between the AS and the AVB; 3) The flow distribution between the AS and the AVB can be predicted mathematically using non-invasive patient data; 4) the AVB leads to a significant reduction in LV stroke work

  • AVB is a viable solution for patients with AS and contraindications to both AVR and TAVI

Read more

Summary

Introduction

Aortic stenosis (AS) is the most common valvular disease in the elderly population. Untreated symptomatic AS is associated with a poor prognosis and significant morbidity. Aortic valve replacement (AVR) is currently the standard of care for reducing the left ventricular overload and improving the quality of life of patients [1]. A significant proportion of patients (around 30% to 60%) are not referred to AVR because they fall within the category of high-risk patients [2,3,4]. This is typically because of comorbidities, severely calcified aorta

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.