Abstract

BackgroundMyocardial perfusion imaging using radionuclides is a well-validated, noninvasive method to aid in the diagnosis of patients with suspected or known myocardial ischemia. To increase the sensitivity of the technique, pharmacologic agents which induce coronary vasodilatation are administered. Regadenoson is a novel selective A2A receptor agonist that has similar efficacy to adenosine for cardiac magnetic resonance imaging (MRI) with a more favorable adverse effect profile and is the most widely used pharmacologic stress agent. While widely used in adults, there is limited experience with it in pediatrics, particularly young children.MethodsThe current study retrospectively reviews our experience with stress cardiac MRI using regadenoson in children requiring general anesthesia. The study cohort included eight patients, all male, ranging in age from 2 to 6.2 years (mean age of 4.2 years) and in weight from 10 to 30.5 kg (mean weight of 18.5 kg). All patients received general anesthesia with endotracheal intubation and a volatile anesthetic agent.ResultsHeart rate 1 min prior to regadenoson was 99 ± 19.2 (mean ± standard deviation (SD)) beats per minute. Peak heart rate was achieved at an average of 4 min post regadenoson administration with a mean heart rate of 122 ± 15 beats per minute. The average of the mean arterial pressure 1 min prior to regadenoson was 53.4 ± 5.2 mm Hg. Mean arterial pressure nadir was noted at 6 min post regadenoson with a value of 44.1 ± 6.3 mm Hg. Blood pressure support with phenylephrine was required in four of the eight (50%) of patients. No adverse respiratory events were noted. Only one of the eight (13%) patients had a perfusion defect but had preserved ventricular function and recovered without incident.ConclusionsUse of regadenoson in pediatric patients requiring general anesthesia is safe and feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.