Abstract

The hemodynamic and proinflammatory effects of endothelin-1 (ET-1) in proximal (1st/2nd order) and terminal (3rd/4th order) arterioles and venules were examined in small intestine submucosa of anesthetized guinea pigs. Vessel diameter (D), red blood cell velocity, and blood flow (Q) were determined in eight proximal and eight terminal microvessels before and at 20 min of ET-1 suffusion (10(-10), 10(-9), and 10(-8) M) and then with endothelin-A (ET(A))-receptor blockade with BQ-123 (10(-5) M). This protocol was repeated with platelet-activating factor (PAF) inhibition (WEB-2086, 1.0 mg/kg iv; n = 16). The ET-1-mediated microvascular responses were also examined with endothelin-B (ET(B))-receptor blockade using BQ-788 (10(-5) M; n = 11) alone or with ET(A+B)-receptor blockade with BQ-123 + BQ-788 (n = 10). Microvascular permeability was assessed by FITC-albumin (25 mg/kg iv) extravasation in seven series: 1) buffered modified Krebs solution suffusion (n = 6), 2) histamine suffusion (HIS; 10(-3) M, n = 5), 3) ET-1 suffusion (10(-8) M, n = 5), 4) BQ-123 (10(-5) M) plus ET-1 suffusion (n = 5), 5) PAF inhibition before ET-1 suffusion (n = 5), 6) histamine-1 (H1)-receptor blockade (diphenhydramine, 20 mg/kg iv) before ET-1 suffusion (n = 5), and 7) ET(B)-receptor blockade before (BQ-788 10(-5) M; n = 3) or with ET-1 suffusion (n = 3). D and Q decreased at 10(-8) M ET-1 and returned to control values with BQ-123 and BQ-123+BQ788 but not with BQ-788 in proximal microvessels. D did not change in terminal microvessels with ET-1 (10(-8) M) but decreased with BQ-788 and increased with BQ-123. PAF inhibition did not affect the D and Q responses of proximal microvessels to ET-1 but prevented the fall in Q in terminal microvessels with ET-1. ET-1 increased vascular permeability to approximately 1/3 of that with HIS; this response was prevented with BQ-123 and WEB-2086 but not with H1-receptor blockade. This is the first evidence that submucosal terminal microvessel flow is reduced with ET-1 independent of vessel diameter changes and that this response is associated with increased microvascular permeability mediated via ET(A)-receptor stimulation and PAF activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call