Abstract

In this paper, we apply a 3-D flow model and a 1-D circulation model to the hemodynamic analysis of transjugular intrahepatic portosystemic shunt (TIPS), the therapy for treating acute portal hypertension (PH) induced diseases. Using the 3-D model we are able to simulate the blood flow within a patient-specific TIPS system which was reconstructed from a computed tomography image, and quantify such hemodynamic data as the wall shear stress and flow velocity. The 1-D model is used for the investigation of generic TIPS-induced hepatic circulation phenomena. By incorporating physiological data into the 1-D model we can reproduce some complex flow patterns such as the increased arterial flow after TIPS implantation, the formation of retrograde flow in the portal vein, etc. In particular, our model gives a quantitative analysis of the interplay between TIPS and hepatic flows. In conclusion, the presented computational model can be used for the theoretical analysis of TIPS, in which clinical decisions are often made based on contradictory considerations to balance the procedure-induced complications and the urgency of relieving acute PH symptoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call