Abstract

BackgroundWe compared the treatment of small unruptured intracranial aneurysms (UIAs) with flow diverter and LVIS-assisted coiling to determine the effects of hemodynamic changes caused by different stent and coil packing in endovascular treatment.MethodsFifty-one UIAs in 51 patients treated with pipeline embolization device (PED) were included in this study and defined as the PED group. We matched controls 1:1 and enrolled 51 UIAs who were treated with LVIS stent, which were defined as the LVIS group. Computational fluid dynamics were performed to assess hemodynamic alterations between PED and LVIS. Clinical analysis was also performed between these two groups after the match.ResultsThere was no difference in procedural complications between the two groups (P = 0.558). At the first angiographic follow-up, the complete occlusion rate was significantly higher in the LVIS group compared with that in the PED group (98.0% vs. 82.4%, P = 0.027). However, during the further angiographic follow-up, the complete occlusion rate in the PED group achieved 100%, which was higher than that in the LVIS group (98.0%). Compared with the LVIS group after treatment, cases in the PED group showed a higher value of velocity in the aneurysm (0.03 ± 0.09 vs. 0.01 ± 0.01, P = 0.037) and WSS on the aneurysm (2.32 ± 5.40 vs. 0.33 ± 0.47, P = 0.011). Consequently, the reduction ratios of these two parameters also showed statistical differences. These parameters in the LVIS group showed much higher reduction ratios. However, the reduction ratio of the velocity on the neck plane was comparable between two groups.ConclusionsBoth LVIS and PED were safe and effective for the treatment of small UIAs. However, LVIS-assisted coiling produced greater hemodynamic alterations in the aneurysm sac compared with PED. The hemodynamics in the aneurysm neck may be a key factor for aneurysm outcome.

Highlights

  • We compared the treatment of small unruptured intracranial aneurysms (UIAs) with flow diverter and Lowprofile visualized intraluminal support (LVIS)-assisted coiling to determine the effects of hemodynamic changes caused by different stent and coil packing in endovascular treatment

  • Lowprofile visualized intraluminal support (LVIS) is a novel self-expanding nitinol closed-cell braided stent that is widely used in UIAs and was demonstrated to be a feasible, safe, and effective treatment for intracranial aneurysms [7]

  • At the first angiographic follow-up, the complete occlusion rate was significantly higher in the LVIS group compared with that in the pipeline embolization device (PED) group (98.0% vs. 82.4%, respectively; P = 0.027)

Read more

Summary

Introduction

We compared the treatment of small unruptured intracranial aneurysms (UIAs) with flow diverter and LVIS-assisted coiling to determine the effects of hemodynamic changes caused by different stent and coil packing in endovascular treatment. PED was demonstrated to be safe and effective for the treatment of small aneurysms, with high angiographic occlusion rates [5, 6]. Lowprofile visualized intraluminal support (LVIS) is a novel self-expanding nitinol closed-cell braided stent that is widely used in UIAs and was demonstrated to be a feasible, safe, and effective treatment for intracranial aneurysms [7]. Many studies suggest that hemodynamics play an important role in aneurysm occlusion and recurrence [12,13,14,15], there are limited studies comparing hemodynamics between flow diverter and the LVIS stent for treatment of UIAs

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.