Abstract

Hemodialysis with cellulose membranes causes a complement-mediated neutropenia. Changes in neutrophil function have also been reported; however, it is unclear if these changes indicate a direct effect of the membrane on neutrophils or if they are a consequence of the neutropenia. We tested the hypothesis that neutrophil oxidative burst activity is enhanced during dialysis with cellulose membranes. Resting and Staphylococcus aureus-stimulated H2O2 production were determined predialysis and in blood entering and leaving the dialyzer during the first 30 min of dialysis and in blood leaving the membrane module in a single-pass on-line model of hemodialysis. Resting H2O2 production increased slightly but significantly during the first 30 min of dialysis. Transit of neutrophils through the dialyzer caused a marked increase in stimulated H2O2 production, indicating priming of the oxidative burst. However, priming was limited to the first 5 min of dialysis before the onset of neutropenia. In contrast, stimulation and priming of H2O2 production persisted throughout 30 min of single-pass on-line perfusion. These results indicate that cellulose membranes both stimulate and prime neutrophil oxidative burst activity but that these effects are partially obscured by neutropenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.