Abstract
Anopheles stephensi and Anopheles culicifacies are dominant malarial vectors in urban and rural India, respectively. Both species carry significant biological differences in their behavioral adaptation and immunity, but the genetic basis of these variations are still poorly understood. Here, we uncovered the genetic differences of immune blood cells, that influence several immune-physiological responses. We generated, analyzed and compared the hemocyte RNA-Seq database of both mosquitoes. A total of 5,837,223,769 assembled bases collapsed into 7,595 and 3,791 transcripts, originating from hemocytes of laboratory-reared 3-4 days old naïve (sugar-fed) mosquitoes, Anopheles stephensi and Anopheles culicifacies respectively. Comparative GO annotation analysis revealed that both mosquito hemocytes encode similar proteins. Furthermore, while An. stephensi hemocytes showed a higher percentage of immune transcripts encoding APHAG (Autophagy), IMD (Immune deficiency pathway), PRDX (Peroxiredoxin), SCR (Scavenger receptor), IAP (Inhibitor of apoptosis), GALE (galactoside binding lectins), BGBPs (1,3 beta D glucan binding proteins), CASPs (caspases) and SRRP (Small RNA regulatory pathway), An. culicifacies hemocytes yielded a relatively higher percentage of transcripts encoding CLIP (Clip domain serine protease), FREP (Fibrinogen related proteins), PPO (Prophenol oxidase), SRPN (Serpines), ML (Myeloid differentiation 2-related lipid recognition protein), Toll path and TEP (Thioester protein), family proteins. However, a detailed comparative Interproscan analysis showed An. stephensi mosquito hemocytes encode proteins with increased repeat numbers as compared to An. culicifacies. Notably, we observed an abundance of transcripts showing significant variability of encoded proteins with repeats such as LRR (Leucine rich repeat), WD40 (W-D dipeptide), Ankyrin, Annexin, Tetratricopeptide and Mitochondrial substrate carrier repeat-containing family proteins, which may have a direct influence on species-specific immune-physiological responses. Summarily, our deep sequencing analysis unraveled that An. stephensi evolved with an expansion of repeat sequences in hemocyte proteins as compared to An. culicifacies, possibly providing an advantage for better adaptation to diverse environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.