Abstract
Despite undergoing development within a germfree egg capsule, embryos and larvae of the freshwater snail Biomphalaria glabrata possess passive immune protection in the form of parentally-derived antimicrobial proteins in the perivitelline fluid. However, the point at which larvae begin to form their own internal defense system (IDS), which consists of both plasma proteins and hemocytes, is not known. In this study, hemocyte-like cells were observed in mechanically-disrupted late trochophores and veligers of the BS-90 strain of B. glabrata. These cells showed the properties of glass adherence, spreading, motility, and binding and phagocytosing polystyrene microspheres. No hemocyte-like cells were recovered from the early trochophore stage, and therefore their formation first occurs during subsequent maturation. Numbers of hemocyte-like cells increased during larval development. Although the functional significance of these cells is not known, they may represent the initial cellular component of the IDS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.