Abstract

Since the discovery of RNAi and its therapeutic potential, carrier systems have been developed to deliver small RNAs (particularly siRNA) for modulation of gene expression at the post-transcriptional level. An important factor determining the fate and usability of these systems in vivo is interaction with blood components, blood cells, and the immune system. In this study, a lipid-based and a polymer-based carrier system containing siRNA have been investigated in vitro in terms of their hemocompatibility. The nanocomplexes studied were Angiplex, a targeted lipid-based system, and pHPMA-MPPM polyplex, a formulation based on a cationic polymer. siVEGFR-2 was encapsulated in both carriers and activation of platelets, coagulation, and complement cascade as well as induction of platelet aggregation were evaluated in vitro. Both systems had been shown before to cause significant silencing in vitro. Our findings indicated that pHPMA-MPPM polyplex triggered high platelet activation and aggregation although it did not stimulate coagulation substantially. Angiplex, on the other hand, provoked insignificant activation and aggregation of platelets and activated coagulation minimally. Complement system activation by Angiplex was in general low but stronger than pHPMA-MPPM polyplex. Taken together, these in vitro assays may help the selection of suitable carriers for systemic delivery of siRNA in early preclinical investigations and reduce the use of laboratory animals significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.