Abstract
We study a class of abstract hemivariational inequalities in a reflexive Banach space. For this class, using the theory of multivalued pseudomonotone mappings and a fixed-point argument, we provide a result on the existence and uniqueness of the solution. Next, we investigate a static frictional contact problem with unilateral constraints between a piezoelastic body and a conductive foundation. The contact, friction and electrical conductivity condition on the contact surface are described with the Clarke generalized subgradient multivalued boundary relations. We derive the variational formulation of the contact problem which is a coupled system of two hemivariational inequalities. Finally, for such system we apply our abstract result and prove its unique weak solvability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.