Abstract

Experimental data coming from visual cognitive sciences suggest that visual analysis starts with a parallel extraction of different visual attributes at different scales/frequencies. Neuropsychological and functional imagery data have suggested that each hemisphere (at the level of temporo–parietal junctions—TPJ) could play a key role in spatial frequency processing: The right TPJ should predominantly be involved in low spatial frequency (LFs) analysis and the left TPJ in high spatial frequency (HFs) analysis. Nevertheless, this functional hypothesis had been inferred from data obtained when using the hierarchical form paradigm, without any explicit spatial frequency manipulation per se. The aims of this research are (i) to investigate, in healthy subjects, the hemispheric asymmetry hypothesis with an explicit manipulation of spatial frequencies of natural scenes and (ii) to examine whether the ‘precedence effect’ (the relative rapidity of LFs and HFs processing) depends on the visual field of scene presentation or not. For this purpose, participants were to identify either non-filtered or LFs and HFs filtered target scene displayed either in the left, central, or right visual field. Results showed a hemispheric specialization for spatial frequency processing and different ‘precedence effects’ depending on the visual field of presentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.