Abstract

These experiments explored the interactions remaining between the cerebral hemispheres in two split-brain macaques. The ‘split’ was earlier confirmed by showing that one hemisphere was incapable of identifying visual images seen by the other. The critical tests for residual interactions were intermingled with control trials in a continuous recognition task. These tests were of two kinds: ‘parallel processing’, to determine how simultaneous viewing by both hemispheres affected subsequent recognition by one of them alone; and ‘conflict’, where opposite responses were demanded from the two hemispheres, thus assessing the issue of metacontrol. Two types of stimuli were also employed: ART, in which each hemisphere saw essentially the same image; and BIPARTITE, in which images were entirely different for each hemisphere. Since, with either type of stimulus, performance was best when viewed by both hemispheres at both encoding and retrieval, ‘parallel processing’ was highly efficient. However, when both hemispheres viewed initially and only one was subsequently queried, performance was significantly worse than when each hemisphere acted alone on each occasion. It is thus reasoned that when both hemisphere view together, the resultant memory trace somehow reflects the bilaterality, a conclusion concordant with observations of Marcel on blindsight. Processing different images (BIPARTITE) was somewhat more disruptive in this regard than if the same image was viewed by each hemisphere. This was particularly true in the conflict situation, where for one hemisphere the item seen was NEW and for the other it was OLD. A response of ‘OLD’ was, at first, consistently rewarded. When this well-established protocol was changed, the hemispheres in each animal were gradually able to revise their joint behavior. This, together with the effect of disparate images, and the deficiency evoked when the animals were forced to recognize unilaterally an image first viewed under bilateral conditions, all manifest considerable, and complex, interaction between the hemispheres despite absence of the forebrain commissures. The superior colliculus seems a likely focal point for such interhemispheric effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.