Abstract
We study the hemispheric distribution of the kinetic helicity of subsurface flows in the near-surface layers of the solar convection zone and its variation with magnetic activity. We determine subsurface flows with a ring-diagram analysis applied to Global Oscillation Network Group (GONG) Dopplergrams and Dynamics Program data from the Michelson Doppler Imager (MDI) instrument onboard the Solar and Heliospheric Observatory (SOHO). We determine the average kinetic helicity density as a function of Carrington rotation and latitude. The average kinetic helicity density at all depths and the kinetic helicity, integrated over 2 – 7 Mm, follow the same hemispheric rule as the current/magnetic helicity proxies with predominantly positive values in the southern and negative ones in the northern hemisphere. This holds true for all levels of magnetic activity from quiet to active regions. However, this is a statistical result; only about 55 % of all locations follow the hemispheric rule. But these locations have larger helicity values than those that do not follow the rule. The average values of helicity density increase with depth for all levels of activity, which might reflect an increase of the characteristic size of convective motions with greater depth. The average helicity of subsets of high magnetic activity is about five times larger than that of subsets of low activity. The solar-cycle variation of helicity is thus mainly due to the presence or absence of active regions. During the rising phase of cycle 24, locations of high magnetic activity at low latitudes show a weaker hemispheric behavior compared to the rising phase of cycle 23.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.