Abstract

AbstractIt has been known for decades that the nightside aurora in the Northern Hemisphere (NH) tends to be brighter when the interplanetary magnetic field (IMF) measured at Earth has a dawnward (negative y) component compared to a duskward (positive y) component. This asymmetric response to the polarity of IMF By has been explained by an interhemispheric current flowing out of the NH due to a nonuniform “penetration” of IMF By onto the magnetotail. If such a hypothesis is correct, it should predict a brighter aurora in the nightside Southern Hemisphere (SH) for positive IMF By than negative IMF By. Here we investigate this hypothesis using Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics/Global Ultraviolet Imager data. The present study not only reproduces the result previously found in NH but also shows an opposite change to its Northern Hemispheric counterpart in SH in response to the different IMF By polarity. When comparing north to south, for negative IMF By, the premidnight auroral energy flux is greater in NH than that in SH. The result becomes opposite for positive IMF By. This result is consistent with the hypothesis of the existence of an interhemispheric field‐aligned current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call