Abstract

We examine lateralization in the evoked magnetic field response to a click stimulus, observing that lateralization effects previously demonstrated for tones, noise, frequency modulated sweeps and certain syllables are also observed for (acoustically simpler) clicks. These effects include a difference in the peak latency of the M100 component of the evoked field waveform such that the peak consistently appears earlier in the right hemisphere, as well as rightward lateralization of field amplitude during the rise of the M100 component. Our review of previous findings on M100 lateralization, taken together with our data on the click-evoked response, leads to the hypothesis that these lateralization effects are elicited by stimuli containing a sharp sound energy onset or acoustic transition rather than specific types of stimuli. We argue that both the latency and the amplitude lateralization effects have a common origin, namely, hemispheric asymmetry in the amplitude of the magnetic field generated by one or more sources active during the M100 rise. While anatomical asymmetry cannot be excluded as the cause of the amplitude difference, we propose that the difference reflects a rightward asymmetry in the processing of sound energy onsets that potentially underlies the lateralization of several functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.