Abstract

Herein, we develop a hemin-functionalized microfluidic chip with dual-electric signal outputs for accurate determination of uric acid (UA). Hemin is designed as the catalyst, which could trigger a built-in reference signal. Carbon nanotube (CNT) and alkalinized titanium carbide (alk-Ti3C2Tx) are used as attachment substrates to strengthen the signal. Benefiting from the synergistic action of hemin, CNT, and alk-Ti3C2Tx, the hybrid functionalized sensor shows prominent electrochemical capacity, desirable catalytic activity, and unique built-in signal ability. Through density functional theory calculations, the structure-reactivity relationship and possible signal output mechanism are deeply investigated. The functionalized sensor is further integrated into a microfluidic chip to prepare a portable electrochemical sensing platform, in which multiple sample processing steps including primary filtration, target enrichment, and reliable analysis can be conducted step-by-step. Based on the abovementioned designs, the developed functionalized microfluidic platform presents desirable performance in UA determination with a detection limit of 0.41 μM. Furthermore, it is capable of accurately detecting UA in urine samples, providing a promising idea for biomolecule monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call