Abstract

Nanozyme is a class of artificial materials that possess enzyme-like activities and can overcome limitations of natural enzymes. However, controllability of the active sites, uniformity of the particles, and dispersion in the physiological media are still challenging for nanomaterial-based nanozymes. In this work, a protein-based nanozyme has been constructed by the encapsulation of hemin into the nanocavity of a recombinant human heavy chain ferritin (Ftn), generating a monodispersed peroxidase-mimetic nanozyme (hemin@Ftn). Hemin@Ftn possesses high peroxidase catalytic activity and high tolerance to the harsh environmental conditions, such as high temperature and chemical denaturant. Remarkably, hemin@Ftn can act as a colorimetric probe for the detection of tumor cells because it can selectively catalyze reactions in tumor cells. This protein-based nanozyme bridges the gap between natural enzymes and nanomaterial-based nanozymes by the incorporation of a catalytically active prosthetic group into a highly stable Ftn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.