Abstract
Periodontal disease is a chronic inflammatory disease in which the oral pathogen Porphyromonas gingivalis plays an important role. Porphyromonas gingivalis expresses virulence determinants in response to higher hemin concentrations, but the underlying regulatory processes remain unclear. Bacterial DNA methylation has the potential to fulfil this mechanistic role. We characterized the methylome of P. gingivalis, and compared its variation to transcriptome changes in response to hemin availability. Porphyromonas gingivalis W50 was grown in chemostat continuous culture with excess or limited hemin, prior to whole-methylome and transcriptome profiling using Nanopore and Illumina RNA-Seq. DNA methylation was quantified for Dam/Dcm motifs and all-context N6-methyladenine (6mA) and 5-methylcytosine (5mC). Of all 1,992 genes analyzed, 161 and 268 were respectively over- and under-expressed with excess hemin. Notably, we detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin availability. Joint analyses identified a subset of coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify altered methylation and expression responses to hemin availability in P. gingivalis, with insights into mechanisms regulating its virulence in periodontal disease. IMPORTANCE DNA methylation has important roles in bacteria, including in the regulation of transcription. Porphyromonas gingivalis, an oral pathogen in periodontitis, exhibits well-established gene expression changes in response to hemin availability. However, the regulatory processes underlying these effects remain unknown. We profiled the novel P. gingivalis epigenome, and assessed epigenetic and transcriptome variation under limited and excess hemin conditions. As expected, multiple gene expression changes were detected in response to limited and excess hemin that reflect health and disease, respectively. Notably, we also detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin. Joint analyses identified coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify novel regulatory processes underlying the mechanism of hemin regulated gene expression in P. gingivalis, with phenotypic impacts on its virulence in periodontal disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.