Abstract

Background and purposeArterial spin labeling(ASL)with magnetic resonance imaging (MRI) is an effective method for estimating cerebral blood flow (CBF). Furthermore, assessing perfusion territories of arteries is useful for determining the treatment strategy of patients with carotid artery stenosis. ASL with selective vessel labeling is an effective method to obtain perfusion mapping, however, the application for selective labeling is not installed on all MR scanners. The purpose of this study is to establish a method to selectively mask in the labeling area using material with high susceptibility instead of selectively labeling to obtain a partial perfusion image.Materials and methodsASL perfusion images were performed in five volunteers. Masking was applied by placing a stainless-steel bolt and nuts on the neck. The area of artifacts extended to the carotid artery was confirmed by the localizer image. In the obtained masked ASL, blood flow of the left and right cerebrum and cerebellum was measured and compared with control ASL without masking. By subtracting masked ASL from the control ASL, the perfusion territory of the carotid artery on the masked side was identified.ResultsMean CBF which was 39.6 ml/(100 g × min) in control ASL decreased to 16.1 ml/(100 g × min) in masked ASL, and the masking ratio was 59.6%. There were no significant differences in the CBF of non-masked areas under the control ASL condition (39.6± 5.2 ml/[100 g × min]) btween that under the masked ASL condition (39.4 ± 7.0 ml/[100 g × min]). By subtracting masked ASL from control ASL, we successfully visualized the hemilateral carotid artery’s perfusion territory.ConclusionIntentional susceptibility artifacts with non-magnetic metals on the neck can mask spin labeling of the carotid artery. Furthermore, hemilateral carotid artery perfusion territories can be visualized in hemilaterally masked ASL.

Highlights

  • Arterial spin labeling (ASL) with magnetic resonance imaging (MRI) is an effective method for estimating cerebral blood flow (CBF)

  • Mean CBF which was 39.6 ml/(100 g × min) in control ASL decreased to 16.1 ml/(100 g × min) in masked ASL, and the masking ratio was 59.6%

  • There were no significant differences in the CBF of non-masked areas under the control ASL condition (39.6± 5.2 ml/[100 g × min]) btween that under the masked ASL condition (39.4 ± 7.0 ml/[100 g × min])

Read more

Summary

Introduction

Arterial spin labeling (ASL) with magnetic resonance imaging (MRI) is an effective method for estimating cerebral blood flow (CBF). Assessing perfusion territories of brain arteries is useful for determining treatment strategies for patients with carotid artery stenosis. Several techniques have been developed to visualize the perfusion territories by selective arterial labeling.[3, 4] the application for this technique is not installed on all MRI scanners. Assessing perfusion territories of arteries is useful for determining the treatment strategy of patients with carotid artery stenosis. ASL with selective vessel labeling is an effective method to obtain perfusion mapping, the application for selective labeling is not installed on all MR scanners. The purpose of this study is to establish a method to selectively mask in the labeling area using material with high susceptibility instead of selectively labeling to obtain a partial perfusion image

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.