Abstract

Hemidesmosomes anchor the epidermal keratin filament cytoskeleton to the extracellular matrix. They are crucial for the mechanical integrity of skin. Their role in keratinocyte migration, however, remains unclear. Examining migrating primary human keratinocytes, we find that hemidesmosomes cluster as ordered arrays consisting of multiple chevrons that are flanked by actin-associated focal adhesions. These hemidesmosomal arrays with intercalated focal adhesions extend from the cell rear to the cell front. New hemidesmosomal chevrons form subsequent to focal adhesion assembly at the cell's leading front, whereas chevrons and associated focal adhesions disassemble at the cell rear in reverse order. The bulk of the hemidesmosome-focal adhesion composite, however, remains attached to the substratum during cell translocation. Similar hemidesmosome-focal adhesion patterns emerge on X-shaped fibronectin-coated micropatterns, during cell spreading and in leader cells during collective cell migration. We further find that hemidesmosomes and focal adhesions affect each other's distribution. We propose that both junctions are separate but linked entities, which treadmill coordinately to support efficient directed cell migration and cooperate to coordinate the dynamic interplay between the keratin and actin cytoskeleton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.