Abstract

Epidermolysis bullosa (EB), a heterogeneous group of genodermatoses, is characterized by fragility and blistering of the skin, associated with characteristic extracutaneous manifestations. Based on clinical severity, constellation of the phenotypic manifestations, and the level of tissue separation within the cutaneous basement membrane zone, EB has been divided into distinct subcategories. Traditionally, these include the simplex, junctional and dystrophic variants of EB. Recent attention has been drawn to variants of EB demonstrating tissue separation at the level of hemidesmosomes, ultrastructurally recognizable adhesion complexes within the cutaneous basement membrane zone. Clinically, these hemidesmosomal variants manifest either as generalized atrophic benign epidermolysis bullosa (GABEB), EB with pyloric atresia, or EB with late-onset muscular dystrophy. Elucidation of basement membrane zone components by molecular cloning and development of mutation detection strategies have revealed that the hemidesmosomal variants of EB result from mutations in the genes encoding the subunit polypeptides of the 180-kD bullous pemphigoid antigen/type XVII collagen, the alpha6beta4 integrin, or plectin, respectively. Collectively, these data add to the understanding of the molecular complexity of the cutaneous basement membrane zone in EB, as attested by the fact that mutations in 10 different genes can underlie different variants of EB. Elucidation of mutations in different forms of EB has direct application to genetic counseling and DNA-based prenatal testing in families with EB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call