Abstract

Fluorescence emission of molecules is strongly influenced by the plasmonic field of metal nanoparticles, with significant enhancement induced under optimal conditions. Nanocomposite ultrathin films fabricated with citrate-stabilized Ag nanoparticles and LB film of a cationic hemicyanine amphiphile, are shown to produce opposing fluorescence emission trends upon subtle variation in the assembly sequence. Monolayer LB films of the pure amphiphile show aggregation-induced quenching with increasing deposition pressure. Composite films formed by adsorption of Ag nanoparticles on the Langmuir film (self-assembly together with steered assembly) followed by LB transfer, show further quenching. However, adsorption of Ag nanoparticles on the pre-formed amphiphile LB film (self-assembly following steered assembly), causes the fluorescence to increase with the extent of adsorption. Spectroscopy and microscopy provide insight into the contrasting, tunable emission. Formation of Ag nanoparticle chains on the Langmuir film and their direct contact with the monolayer cause the fluorescence quenching; adsorption of isolated Ag nanoparticles on the LB film along with multilayer formation leads to the enhancement. The study illustrates the versatility of LB film—metal nanoparticle composites in producing distinct materials responses through subtle changes in the mode of assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.