Abstract

We report in this contribution that while low molecular weight hemicellulosic building blocks are known not to interact with cellulosic materials, their multivalent presentation on a polymeric scaffold significantly enhanced the binding interactions that are remarkably in the same range as those usually observed for lectin-carbohydrate interactions. We developed a poly(propargyl methacrylate) scaffold on which we conjugated, by "post-click" reaction, a variety of azide reducing-end functionalized xyloglucan oligosaccharides with controlled enzymatic-mediated rate of degalactosylation. Bottlebrush-like xyloglucan oligosaccharide glycopolymers (poly(XGOn)) were obtained and their self-assemblies in aqueous solution were investigated using dynamic light scattering (DLS). We demonstrated that increasing the extent of degalactosylation promoted self-association of poly(XGOn), which we attribute to the appearance of hydrophobic domains. A sharp thermoresponsiveness, which corresponds to a decrease in aggregate size with increasing temperature, was observed when the extent of degalactosylation was 30% or greater. Importantly, isothermal titration calorimetry (ITC) and polarized/depolarized DLS revealed that poly(XGOn) exhibit a significant capacity to interact with nanocrystalline cellulose (NCC) surfaces particularly for the nondegalactosylated form, emphasizing the important role of galactosyl residues in the binding mechanism and in the 3-dimensional structures of glycopolymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call