Abstract

Plasmid DNA incubated in interphase Xenopus egg extracts is normally assembled into chromatin and then into synthetic nuclei which undergo one round of regulated replication. During a study of restriction endonuclease cut plasmid replication intermediates (RIs) by the Brewer-Fangman 2D gel electrophoresis technique, we have observed the formation of a strong spike of X-shaped DNA molecules in extracts that otherwise yield very little or no RIs. Formation of these joint molecules is also efficiently induced in replication-competent extracts upon inhibition of replication fork progression by aphidicolin. Although their electrophoretic properties are quite similar to those of Holliday junctions, 2D gels of doubly cut plasmids show that these junctions can link two plasmid molecules at any pair of DNA sequences, with no regard for sequence homology at the branch points. Neutral-neutral-alkaline 3D gels show that the junctions only contain single strands of parental size and no recombinant strands. A hemicatenane, in which one strand of a duplex is wound around one strand of another duplex, is the most likely structure to account for these observations. The mechanism of formation of these novel joint DNA molecules and their biological implications are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.