Abstract

The formation of hemiacetals from pyrazine trifluoromethylketone as a model receptor and four simple alcohols was studied by using quantum chemical calculations and NMR spectroscopy. Free energy profiles for four types of mechanistic pathways were calculated and discussed with respect to kinetic and thermodynamic measurements. We show that hemiacetal formation is facilitated by an assisted proton transfer process via a pseudo eight-membered transition state which brings the theory and experiment into close agreement. Also, a newly proposed mechanistic pathway for hemiacetal formation via a five-membered transition state leading to zwitterionic intermediates is discussed. Direct proton transfer in a pseudo four-membered transition state can be ruled out due to the high energy of transition states with respect to other mechanistic pathways. We also show that in the case of hemiacetals, water and alcohol molecules cannot account sufficiently for the H-transfer process via six-membered transition states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.