Abstract

The incorporation of CO-heme into single bilayer, egg lecithin vesicles was examined by following the spectral changes that occur when the porphyrin becomes embedded in the membranes. The rate of CO-heme uptake by liposomes is extremely fast (t1/2 less than or equal to 20 ms at 10 degrees C), and the maximum extent is roughly 1 heme/5 phospholipid molecules. This limiting stoichiometry is due to unfavorable electrostatic interactions between the propionate groups of the bound CO-heme. This effect was treated theoretically by attenuating the intrinsic heme partitioning equilibrium constant with an exponential term reflecting the surface potential of the membranes. The surface potential was assumed to be proportional to the concentration of CO-heme in the membranes, and the final expression is Kp = Kop exp[-AHb/VpCp], where Kp is the observed partition constant; Kop, the intrinsic constant; Hb, the concentration of bound heme in the suspension; Vp, the partial molar volume of egg lecithin; Cp, the concentration of lipid phosphate; and A, an empirical constant representing the capacitance of the membrane for heme. For the analysis of kinetic data, the electrostatic term is assumed to apply only to the membrane dissociation rate constant, k-1, and not the association rate constant, k1. The dissociation rate was measured independently either by following the transfer of CO-heme from one vesicle fraction to another or by monitoring heme efflux from the membranes and incorporation into apohemoglobin at high protein concentrations. The data for all three sets of experiments, heme uptake, transfer, and incorporation into globin at 10 degrees C, were fitted quantitatively to the partitioning mechanism using A = 15 M-1, Kop = 5 X 10(5), k1 = 2 X 10(6) s-1, and k0(-1) = 4 s-1. Thus, heme can spontaneously migrate across lipid-water interfaces and hence diffuse rapidly from the mitochondrial inner membrane where it is synthesized to the rough endoplasmic reticulum where it is incorporated into hemoglobin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.