Abstract

We have examined the optical, magnetic circular dichroism, and electron paramagnetic resonance (EPR) spectra of pure ovine prostaglandin H synthase in its resting (ferric) and ferrous states and after addition of hydrogen peroxide or 15-hydroperoxyeicosatetraenoic acid. In resting synthase, the distribution of heme between high- and low-spin forms was temperature-dependent: 20% of the heme was low-spin at room temperature whereas 50% was low-spin at 12 K. Two histidine residues were coordinated to the heme iron in the low-spin species. Anaerobic reduction of the synthase with dithionite produced a high-spin ferrous species that had no EPR signals. Upon reaction with the resting synthase, both hydroperoxides quickly generated intense (20-40% of the synthase heme) and complex EPR signals around g = 2 that were accompanied by corresponding decreases in the intensity of the signals from ferric heme at g = 3 and g = 6. The signal generated by HOOH had a doublet at g = 2.003, split by 22 G, superimposed on a broad component with a peak at g = 2.085 and a trough at g = 1.95. The lipid hydroperoxide generated a singlet at g = 2.003, with a linewidth of 25 G, superimposed on a broad background with a peak at g = 2.095 and a trough around g = 1.9. These EPR signals induced by hydroperoxide may reflect synthase heme in the ferryl state complexed with a free radical derived from hydroperoxide or fragments of hydroperoxide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.