Abstract

We previously determined that yquem harbors a mutation in the gene encoding uroporphyrinogen decarboxylase (UROD), the fifth enzyme in heme biosynthesis, and established zebrafish yquem (yqe(tp61)) as a vertebrate model for human hepatoery-thropoietic porphyria (HEP). Here we report that six exocrine peptidase precursor genes, carboxypeptidase A, trypsin precursor, trypsin like, chymotrypsinogen B1, chymotrypsinogen 1-like, and elastase 2 like, are downregulated in yquem/urod (-/-), identified initially by microarray analysis of yquem/urod zebrafish and, subsequently, confirmed by in situ hybridization. We then determined downregulation of these six zymogens specifically in the exocrine pancreas of sauternes (sau(tb223)) larvae, carrying a mutation in the gene encoding delta-amino-levulinate synthase (ALAS2), the first enzyme in heme biosynthesis. We also found that ptf1a, a transcription factor regulating exocrine zymogens, is downregulated in both yquem/urod (-/-) and sau/alas2 (-/-) larvae. Further, hemin treatment rescues expression of ptf1a and these six zymogens in both yquem/urod (-/-) and sauternes/alas2 (-/-) larvae. Thus, it appears that heme deficiency downregulates ptf1a, which, in turn, leads to downregulation of exocrine zymogens. Our findings provide a better understanding of heme deficiency pathogenesis and enhance our ability to diagnose and treat patients with porphyria or pancreatic diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.