Abstract

Biocompatible nanosized polyamidoamine (PAMAM) dendrimer films provided a suitable microenvironment for heme proteins to transfer electron directly with underlying pyrolytic graphite (PG) electrodes. Hemoglobin (Hb), myoglobin (Mb), horseradish peroxidase (HRP), and catalase (Cat) incorporated in PAMAM films exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks, respectively, characteristic of the protein heme Fe(III)/Fe(II) redox couples. While Hb-, Mb-, and HRP-PAMAM films showed the cyclic voltammetry (CV) peaks at about −0.34 V vs. saturated calomel electrode (SCE) in pH 7.0 buffers, Cat-PAMAM films displayed the peak pair at a more negative potential of −0.47 V. The protein-PAMAM films demonstrated a surface-confined or thin-layer voltammetric behavior. The electrochemical parameters such as apparent heterogeneous electron transfer rate constants ( k s) and formal potentials ( E°′) were estimated by square wave voltammetry with nonlinear regression analysis. UV–vis and IR spectroscopy showed that the proteins retained their near-native secondary structures in PAMAM films. Oxygen, hydrogen peroxide, and nitrite were catalytically reduced at the protein-PAMAM film electrodes, showing the potential applicability of the films as the new type of biosensors or bioreactors based on direct electrochemistry of the proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.