Abstract

The outbreak of coronavirus disease 2019 (COVID-19) requires urgent need for effective treatment. Severe COVID-19 is characterized by a cytokine storm syndrome with subsequent multiple organ failure (MOF) and acute respiratory distress syndrome (ARDS), which may lead to intensive care unit and increased risk of death.While awaiting a vaccine, targeting COVID-19-induced cytokine storm syndrome appears currently as the efficient strategy to reduce the mortality of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).The stress-responsive enzyme, heme oxygenase-1 (HO-1) is largely known to protect against inflammatory response in animal models. HO-1 is induced by hemin, a well-tolerated molecule, used for decades in the treatment of acute intermittent porphyria. Experimental studies showed that hemin-induced HO-1 mitigates cytokine storm and lung injury in mouse models of sepsis and renal ischemia-reperfusion injury. Furthermore, HO-1 may also control numerous viral infections by inhibiting virus replication.In this context, we suggest the hypothesis that HO-1 cytoprotective pathway might be a promising target to control SARS-CoV-2 infection and mitigate COVID-19-induced cytokine storm and subsequent ARDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call