Abstract
Changes in the activities of rat liver heme oxygenase (HO), superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione reductase (GR), as well as changes in lipid peroxidation and reduced glutathione (GSH) levels were measured after acute loading and chronic administration of cobalt chloride (CoCl2). Acute loading was achieved by a single subcutaneous injection of 60 mg CoCl2/kg body weight for 24 h. Chronic administration was performed by giving the same total amount of CoCl2 in small doses over longer periods of time: 30 mg CoCl2/kg daily for 2 days, 15 mg CoCl2/kg daily for 4 days, or 10 mg CoCl2/kg daily for 6 days. The results showed that HO activity was increased both after acute loading (7-fold increase) and upon 6-day administration of CoCl2 (5-fold increase). The GSH level, 24 h after a single injection of CoCl2, was lower than that of the control animals. However, upon chronic administration of small doses CoCl2, the level of GSH increased and was accompanied by an increase in GR activity. Chronic administration of CoCl2 produced persistent oxidative stress, which was illustrated with a continuous increase in lipid peroxidation. At the same time, under these conditions, the activities of oxidative-stress-protective enzymes were either inhibited (SOD, catalase) or not significantly changed (GPx). Collectively, these findings suggest that the sustained up-regulation of HO activity in rat liver upon 6 day administration of CoCl2 would be beneficial by providing the cells with antioxidants, biliverdin and bilirubin, and together with the increased levels of GSH would act as a part of the defence mechanisms against the cobalt-induced oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.