Abstract

Heme oxygenase (HO) cleaves the tetrapyrrolic ring of cellular heme moieties liberating carbon monoxide (CO) and equimolar amounts of free iron and biliverdin (BV). BV is in turn converted into bilirubin (BR) by the cytosolic enzyme BV reductase. Three HO isoforms have been described to date: HO-1, HO-2, and HO-3. All these isoforms are present in nervous tissue with different localizations and regulation. CO, the gaseous product of HO, exerts its biological effects through the activation of soluble guanylyl cyclase, but alternative signaling pathways, such as the activation of cyclooxygenase, have also been reported in the brain. In vitro and in vivo studies showed that CO, at the hypothalamic level, plays a key role in the modulation of stress response because it inhibits the release of antiinflammatory neuropeptides, such as corticotropin-releasing hormone and arginine vasopressin, and increases body temperature in rodents exposed to psychological stressors (stress fever). In the last few years, a new role of BR as an endogenously produced antioxidant has emerged, and several reports have shown that BR contributes to prevent cell damage mediated by reactive oxygen species, as well as nitric oxide and its congeners.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call