Abstract

Hemin (10 microM) and carbon monoxide (CO) increased iberiotoxin-blockable IKCa in portal vein smooth muscle cells. CO-induced IKCa activation was abolished by 10 microM ODQ, 10 microM cyclopiazonic acid and 1 microM KT5823. The hemin-induced effect on IKCa was abolished by pretreatment with Sn-protoporphyrin IX, a heme oxygenase inhibitor and Fe2+ chelator but was insensitive to inhibitors of soluble guanylate cyclase (GC) and cGMP-dependent protein kinase (PKG). There was no effect of hemin on IKCa in the presence of 3 microM dithiotreitol into the bath or 3 mM glutathione into the pipette solution. Superoxide dismutase (1000 U/ml) or catalase (3000 U/ml) added into the pipette solution also abolished the effect of hemin on IKCa in this tissue. Additionally, 10 microM hemin could not influence IKCa in Ca2+-free external solution or in the presence of 30 microM SKF 95356. It was concluded that CO increases IKCa via its "conventional" signaling pathway, which involves soluble GC and PKG activation and subsequent stimulation of sarcoplasmic reticulum Ca2+ pump activity resulting in Ca2+-dependent activation of IKCa due to the accumulation of Ca2+ into the space near the plasma membrane. On the other hand, internally produced CO could not yield the same IKCa increase, while Fe2+ derived from heme oxygenase 2-dependent degradation of hemin in portal vein smooth muscle cells gives rise to reactive oxygen species namely hydroxyl and superoxide radicals. Both radicals are responsible for the SKF 95356-sensitive non-selective cation channel activation, the Ca2+ influx and the subsequent increase of Ca2+ concentration near the plasma membrane that augments the KCa channel activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.