Abstract
Brazilin, the main constituent of Caesalpinia sappan L., is a natural red pigment that has been reported to possess anti-inflammatory properties. This study aimed to identify a novel anti-inflammatory mechanism of brazilin. We found that brazilin did not cause cytotoxicity below 300 μM, and activated heme oxygenase-1 (HO-1) protein synthesis in a concentration-dependent manner at 10–300 μM in RAW264.7 macrophages without affecting mRNA transcription of HO-1. Additionally, brazilin increased bilirubin production and HO-1 activity in RAW264.7 macrophages. In lipopolysaccharide (LPS)-stimulated macrophages, brazilin suppressed the release of nitric oxide (NO), prostaglandin E 2 (PGE 2), interleukin (IL)-1β and tumor necrosis factor-α (TNF-α), and reduced the expression of inducible nitric oxide synthase (iNOS). A specific inhibitor of HO-1, Zn(II) protoporphyrin IX, blocked the suppression of NO production, cytokines release and iNOS expression by brazilin. These results suggest that brazilin possesses anti-inflammatory actions in macrophages and works through a novel mechanism involving the action of HO-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.