Abstract

The mouse and human malarial parasites, Plasmodium berghei and Plasmodium falciparum, respectively, synthesize heme de novo following the standard pathway observed in animals despite the availability of large amounts of heme, derived from red cell hemoglobin, which is stored as hemozoin pigment. The enzymes, delta-aminolevulinate dehydrase (ALAD), coproporphyrinogen oxidase, and ferrochelatase are present at strikingly high levels in the P. berghei infected mouse red cell in vivo. The isolated parasite has low levels of ALAD and the data clearly indicate it to be of red cell origin. The purified enzyme preparations from the uninfected red cell and the parasite are identical in kinetic properties, subunit molecular weight, cross-reaction with antibodies to the human enzyme, and N-terminal amino acid sequence. Immunogold electron microscopy of the infected culture indicates that the enzyme is present inside the parasite and, therefore, is not a contaminant. The parasite derives functional ALAD from the host and the enzyme binds specifically to isolated parasite membrane in vitro, suggestive of the involvement of a receptor in its translocation into the parasite. While, ALAD, coproporphyrinogen oxidase, and ferrochelatase from the parasite and the uninfected red cell supernatant have identical subunit molecular weights on SDS-polyacrylamide gel electrophoresis and show immunological cross-reaction with antibodies to the human enzymes, as revealed by Western analysis, the first enzyme of the pathway, namely, delta-aminolevulinate synthase (ALAS) in the parasite, unlike that of the red cell host, does not cross-react with antibodies to the human enzyme. However, ALAS enzyme activity in the parasite is higher than that of the infected red cell supernatant. We therefore conclude that the parasite, while making its own ALAS, imports ALAD and perhaps most of the other enzymes of the pathway from the host to synthesize heme de novo, and this would enable it to segregate this heme from the heme derived from red cell hemoglobin degradation. ALAS of the parasite and the receptor(s) involved in the translocation of the host enzymes into the parasite would be unique drug targets.

Highlights

  • The mouse and human malarial parasites, Plasmodium berghei and Plasmodium falciparum, respectively, synthesize heme de novo following the standard pathway observed in animals despite the availability of large amounts of heme, derived from red cell hemoglobin, which is stored as hemozoin pigment

  • We conclude that the parasite, while making its own aminolevulinate synthase (ALAS), imports aminolevulinate dehydrase (ALAD) and perhaps most of the other enzymes of the pathway from the host to synthesize heme de novo, and this would enable it to segregate this heme from the heme derived from red cell hemoglobin degradation

  • With [4-14C]ALA as precursor, 80% of the radioactive heme is recovered in infected red cell supernatant (IRS), whereas with [2-14C]glycine as precursor, the bulk of the radioactive heme is recovered in the parasite pellet

Read more

Summary

Introduction

The mouse and human malarial parasites, Plasmodium berghei and Plasmodium falciparum, respectively, synthesize heme de novo following the standard pathway observed in animals despite the availability of large amounts of heme, derived from red cell hemoglobin, which is stored as hemozoin pigment. The enzymes, ␦-aminolevulinate dehydrase (ALAD), coproporphyrinogen oxidase, and ferrochelatase are present at strikingly high levels in the P. berghei infected mouse red cell in vivo. We conclude that the parasite, while making its own ALAS, imports ALAD and perhaps most of the other enzymes of the pathway from the host to synthesize heme de novo, and this would enable it to segregate this heme from the heme derived from red cell hemoglobin degradation. The synthesis of heme de novo by the parasite in the intraerythrocytic stage is rather surprising, since the parasite obtains a surplus of heme from the degradation of the red cell hemoglobin This heme is stored as the inert hemozoin pigment [2, 3]. Functional ferrochelatase could be detected, leading to the conclusion that the parasite has lost part of its heme pathway due to mutations in some of the enzyme sequences, necessitating preformed hemin requirement [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.