Abstract
Alzheimer's disease (AD) is one of the most serious neurodegenerative diseases with no effective treatment options available. The formation of insoluble amyloid fibrils of the hyperphosphorylated tau protein is intimately associated with AD, hence the tau protein has been a key target for AD drug development. In this work, hematoxylin was discovered as a dual functional compound, that is, acting in the inhibition of repeat domain of tau (tau-RD) protein fibrillogenesis and remodeling of pre-formed tau-RD fibrils in vitro. Meanwhile, hematoxylin was able to reduce the accumulation of tau-RD aggregates in Saccharomyces cerevisiae. Experimental and computational studies indicated that hematoxylin directly interacts with tau-RD protein through hydrophobic forces, hydrogen bonds, π-cation interactions, and π-π stackings. In addition, cellular viability assays showed that hematoxylin greatly reduced cytotoxicity induced by tau-RD aggregates. In summary, hematoxylin might be a promising candidate for further development as a potential therapeutic drug for AD patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.