Abstract

BackgroundIn the last decades, human full-term cord blood was extensively investigated as a potential source of hematopoietic stem and progenitor cells (HSPCs). Despite the growing interest of regenerative therapies in preterm neonates, only little is known about the biological function of HSPCs from early preterm neonates under different perinatal conditions. Therefore, we investigated the concentration, the clonogenic capacity and the influence of obstetric/perinatal complications and maternal history on HSPC subsets in preterm and term cord blood.MethodsCD34+ HSPC subsets in UCB of 30 preterm and 30 term infants were evaluated by flow cytometry. Clonogenic assays suitable for detection of the proliferative potential of HSPCs were conducted. Furthermore, we analyzed the clonogenic potential of isolated HSPCs according to the stem cell marker CD133 and aldehyde dehydrogenase (ALDH) activity.ResultsPreterm cord blood contained a significantly higher concentration of circulating CD34+ HSPCs, especially primitive progenitors, than term cord blood. The clonogenic capacity of HSPCs was enhanced in preterm cord blood. Using univariate analysis, the number and clonogenic potential of circulating UCB HSPCs was influenced by gestational age, birth weight and maternal age. Multivariate analysis showed that main factors that significantly influenced the HSPC count were maternal age, gestational age and white blood cell count. Further, only gestational age significantly influenced the clonogenic potential of UCB HSPCs. Finally, isolated CD34+/CD133+, CD34+/CD133– and ALDHhigh HSPC obtained from preterm cord blood showed a significantly higher clonogenic potential compared to term cord blood.ConclusionWe demonstrate that preterm cord blood exhibits a higher HSPC concentration and increased clonogenic capacity compared to term neonates. These data may imply an emerging use of HSPCs in autologous stem cell therapy in preterm neonates.

Highlights

  • Umbilical cord blood (UCB) is a rich source of hematopoietic stem and progenitor cells (HSPCs)

  • One preterm neonate was diagnosed with meconium peritonitis

  • We found differences in CD34+ HSPC concentrations and in vitro clonogenic capacity in preterm compared with term cord blood cells and, using multiple linear backward regression, three predictive factors influencing the count and in vitro clonogenic capacity: (1) gestational age, (2) white blood cell count and (3) maternal age

Read more

Summary

Introduction

Umbilical cord blood (UCB) is a rich source of hematopoietic stem and progenitor cells (HSPCs). Hematopoietic stem and progenitor cells, as assessed by the expression of CD34, are capable of differentiating into nonhematopoietic cells such as microglia [2], hepatocytes [3], and type II alveolar pneumocytes [4]. These findings may indicate a supporting role of HSPCs in the intrauterine development. Human full-term cord blood was extensively investigated as a potential source of hematopoietic stem and progenitor cells (HSPCs). We investigated the concentration, the clonogenic capacity and the influence of obstetric/perinatal complications and maternal history on HSPC subsets in preterm and term cord blood

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call