Abstract

The use of umbilical cord blood for allogeneic transplantation has increased dramatically over the past years. However, the limited number of cells available in a single cord blood unit remains a serious obstacle. Here, we wished to establish a nonhuman primate cord blood transplantation model that would allow us to test various hematopoietic stem cell expansion and gene therapy strategies. We implemented HOXB4-mediated expansion based on our previous experience with HOXB4 in autologous cells. Cord blood units were divided into two equal parts; half of the cells were transduced with a yellow fluorescent protein control vector and cryopreserved, and half were transduced with a HOXB4GFP vector, expanded, and cryopreserved. Both fractions of cells were transplanted into Macaca nemestrina subjects. We found that neutrophil recovery occurred within 19 days in all animals, and both neutrophil and platelet recovery were substantially accelerated compared to human single unit cord blood transplants. In addition, HOXB4-transduced and expanded cells resulted in superior engraftment of all hematopoietic lineages in all animals over nonexpanded controls. In conclusion, we have successfully established a nonhuman primate cord blood transplantation model and demonstrated that HOXB4 stimulates expansion and engraftment of repopulating cells. The availability of such a model has significant implications for developing and testing strategies to improve clinical cord blood transplantation, as it will allow comparison of different stem cell expansion methodologies within a single animal. Furthermore, it can be used in long-term follow-up studies to determine how specific expansion techniques affect engraftment of various hematopoietic lineages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call