Abstract

Flt3-ligand is a cytokine that induces relatively slow mobilization of hematopoietic cells in animals and humans in vivo. This provides a time-frame to study hematopoietic stem and progenitor cell migration kinetics in detail. Mice were injected with Flt3-ligand (10 microg/day, intraperitoneally) for 3, 5, 7 and 10 days. Mobilization of hematopoietic stem and progenitor cells was studied using colony-forming-unit granulocyte/monocyte and cobblestone-area-forming-cell assays. The radioprotective capacity of mobilized peripheral blood mononuclear cells was studied by transplantation of 1.5 x 10(6) Flt3-ligand-mobilized peripheral blood mononuclear cells into lethally irradiated (9.5 Gy) recipients. Hematopoietic progenitor cell mobilization was detected from day 3 onwards and prolonged administration of Flt3-ligand produced a steady increase in mobilized progenitor cells. Compared to Flt3-ligand administration for 5 days, the administration of Flt3-ligand for 10 days led to a 5.5-fold increase in cobblestone-area-forming cells at week 4 and a 5.0-fold increase at week 5. Furthermore, transplantation of peripheral blood mononuclear cells mobilized by 5 days of Flt3-ligand administration did not radioprotect lethally irradiated recipients, whereas peripheral blood mononuclear cells mobilized by 10 days of Flt3-Ligand administration did provide 100% radioprotection of the recipients with significant multilineage donor chimerism. Compared to the administration of Flt3-ligand or interleukin-8 alone, co-administration of interleukin-8 and Flt3-ligand led to synergistic enhancement of hematopoietic stem and progenitor cell mobilization on days 3 and 5. These results indicate that hematopoietic stem and progenitor cells show different mobilization kinetics in response to Flt3-ligand, resulting in preferential mobilization of hematopoietic progenitor cells at day 5, followed by hematopoietic stem cell mobilization at day 10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.