Abstract

The widespread use of pesticides in agriculture represents a threat to the human populations exposed to them. In this cross-sectional study, the hematological and biochemical parameters, plasma cholinesterase (PChE) activity, oxidative stress, genotoxicity, and NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism were measured in 100 greenhouse workers occupationally exposed to pesticide mixture and 104 normal healthy controls. There was a decrease in erythrocytes (5.45%, p = 0.026) and hemoglobin (3.26%, p = 0.025), and an increase in mean corpuscular hemoglobin (3.54%, p = 0.013) in the exposed workers. Sprayers showed a reduction in PChE (23%) and GSH (50%) levels, and an increase in lipid peroxidation (LPO) (55%), protein carbonyl (145%), Superoxide dismutase activity (61%), and total antioxidant capacity (35%) (p < 0.001 for all parameters but LPO: p = 0.009). Genotoxicity parameters were significantly high in the exposed cases (for all parameters: p < 0.001 but tail length: p = 0.002). There was a significant correlation between oxidative stress and genotoxicity parameters, and also between these biomarkers and PChE activity. The NQO1 C609T polymorphism was not significantly associated with studied biomarkers. The findings indicate that occupational exposure to a mixture of pesticides can induce hematotoxicity, oxidative stress, and genotoxicity in greenhouse workers.

Highlights

  • Pesticides are among more than 1000 active ingredients that can be divided into three main classes: insecticide, herbicide, and fungicide

  • There were no significant differences between the two groups in regard to age, body mass index (BMI), smoking status, and NAD(P)H: quinone oxidoreductase 1 (NQO1) polymorphisms

  • In contrast to previous studies that reported no significant changes in erythrocyte count, hemoglobin, and mean corpuscular hemoglobin (MCH) levels [7,33,34], our results demonstrated a higher level of MCH and lower levels of erythrocytes and hemoglobin in the sprayer population

Read more

Summary

Introduction

Pesticides are among more than 1000 active ingredients that can be divided into three main classes: insecticide, herbicide, and fungicide. Despite all of the advantages of pesticides, their widespread use has released large amounts of potentially toxic substances into the environment and affected human health [1,2]. Occupational pesticide toxicity involves a large number of people, mainly in developing countries, where a significant percentage of the active population is involved in agriculture and pesticide application in inappropriate conditions, including the usage of restricted compounds and unsuitable spraying equipment [3,4]. The estimated amount and overall frequency of pesticide use in Jiroft is much more than is needed [6]

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.