Abstract

Abstract A spin-reorientation transition from a weakly ferromagnetic (WF) to an antiferromagnetic (AF) spin ordering in hematite (α-Fe2O3) during cooling occurs at Morin temperature (TM∼264 K for bulk). The transition is strongly size dependent and TM generally decreases with the decreasing volume of the particles. For particles smaller than approximately ∼20 nm, the Morin transition may be even suppressed and disappears entirely as near-surface spins deviate strongly from the antiferromagnetic easy axis. We report an investigation on nanoparticles prepared by hydrothermal method and sol–gel technique (in silica) of pure α-Fe2O3 phase as confirmed by XRD (space group R-3c, lattice parameters a = 5.038(2) A, c = 13.772(12) A) differing in the median size derived by TEM: 5.6 nm, 26 nm, 42 nm and 103 nm. By means of Mossbauer spectra acquired between 4.2 and 300 K, we determined the relative concentrations of magnetic phases (WF and AF) within the 57Fe enriched sample and searched for the best finite-scaling theoretical model (mean-field, 3D Heisenberg, Ising) describing the derived size dependence of Morin temperature of the nanoparticles with a log-normal size distribution. The comparison of relevant parameters derived from the fit of experimental data by theoretical model is consistent with the 3D Heisenberg model with scaling parameter λ = 1.4, Morin temperature of bulk material TM(∞) = 265(1) K and correlation length ξ0 = 8.1(2) nm or Ising model with λ = 1.6, TM(∞) = 265(1) K and ξ0 = 9.4(2) nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.