Abstract

In the present work, hematite iron oxide nano-particles are synthesized through a facile wet chemical precipitation route. The phase formation behavior and microstructure evolution of the synthesized nano-particles are studied using infrared spectroscopy in conjunction with x-ray diffraction analyses and electron microscopy. Chemi-resistive type hydrogen sensing characteristics (e.g. response %, response time, recovery time) of hematite iron oxide nano-particulate sensing element are evaluated using an automated, dynamic flow gas sensing measurement set-up. The sensing characteristics are measured by varying the operating temperature (275–350 °C) of the sensor and concentration of hydrogen (250–1660 ppm). From the operating temperature dependence of response and recovery times, we have estimated the respective activation energies for response and recovery processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.