Abstract
Photoelectrochemical (PEC) water splitting has been considered as an alternative process to produce green hydrogen. However, the energy conversion efficiency of PEC systems was still limited by the inefficient photoanode. Cocatalysts decoration is regarded as an efficient strategy for improving PEC performance of photoanode. In this work, nanodot-like cobalt (oxy)hydroxides was rationally decorated on hematite to fabricate CoOOH/Fe2O3 photoanode. The resulted CoOOH/Fe2O3 exhibits a high photocurrent density of 1.92 mA cm−2 at 1.23 V vs. RHE, which is 2.6 times than that of bare Fe2O3. In addition, the onset potential displays a cathodic shift of ca. 110 mV, indicating that CoOOH can efficiently accelerate water oxidation kinetics over Fe2O3. The comprehensive PEC and electrochemical characterizations reveal that CoOOH could not only provide abundant accessible Co active sites for water oxidation, but also could passivate the surface states of Fe2O3, thus increase the carrier density and decrease the interfacial resistance. As a result, the PEC water oxidation performance over Fe2O3 was significantly boosted. This work supports that the roles of CoOOH cocatalyst is generic and such CoOOH could be used for other semiconductor-based photoanodes for outstanding PEC water splitting performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.