Abstract

Wireless Sensor Network is considered as the intermediate layer in the paradigm of Internet of things (IoT) and its effectiveness depends on the mode of deployment without sacrificing the performance and energy efficiency. WSN provides ubiquitous access to location, the status of different entities of the environment and data acquisition for long term IoT monitoring. Achieving the high performance of the WSN-IoT network remains to be a real challenge since the deployment of these networks in the large area consumes more power which in turn degrades the performance of the networks. So, developing the robust and QoS (quality of services) aware energy-efficient routing protocol for WSN assisted IoT devices needs its brighter light of research to enhance the network lifetime. This paper proposed a Hybrid Energy Efficient Learning Protocol (HELP). The proposed protocol leverages the multi-tier adaptive framework to minimize energy consumption. HELP works in a two-tier mechanism in which it integrates the powerful Extreme Learning Machines for clustering framework and employs the zonal based optimization technique which works on hybrid Whale-dragonfly algorithms to achieve high QoS parameters. The proposed framework uses the sub-area division algorithm to divide the network area into different zones. Extreme learning machines (ELM) which are employed in this framework categories the Zone's Cluster Head (ZCH) based on distance and energy. After categorizing the zone's cluster head, the optimal routing path for an energy-efficient data transfer will be selected based on the new hybrid whale-swarm algorithms. The extensive simulations were carried out using OMNET++-Python user-defined plugins by injecting the dynamic mobility models in networks to make it a more realistic environment. Furthermore, the effectiveness of the proposed HELP is examined against the existing protocols such as LEACH, M-LEACH, SEP, EACRP and SEEP and results show the proposed framework has outperformed other techniques in terms of QoS parameters such as network lifetime, energy, latency.

Highlights

  • Over the last few years, WSN assisted Internet of Things paradigm [1] has evolved as one of the biggest technological advances in the modern era of science

  • To countermeasure all the above-mentioned issues, this paper proposes the new protocol Hybrid Energy Efficient Learning Protocol (HELP)-DAR (Hybrid Efficient Learning Protocol using Dynamic Adaptive Routing), a hybrid multi-tier and intelligent energy-efficient routing protocol which integrates the powerful extreme learning machines for the selection of zone-based Cluster Head (CH) along with the hybrid metaheuristic algorithm for an efficient and optimal zonal routing protocol

  • The proposed HELP protocol performance is in a two-tier fashion, which is discussed

Read more

Summary

Introduction

Over the last few years, WSN assisted Internet of Things paradigm [1] has evolved as one of the biggest technological advances in the modern era of science. WSN assisted IoT networks to consist of sensor nodes, actuators, transceivers and many more devices for better data collection, monitoring and controlling. These hubs presented in WSN supported IoT networks create the physical objects aware of different attributes in the deployed networks and trigger an event in coordination with the other nodes in the network. These hubs are usually energy consuming which demands intelligent techniques to increase network lifetime [2].

Related Works
System Overview
Network Model
Energy Models
Initialization Phase
Extreme Learning Machines – an Overview
Proposed Optimizer for Routing
Experimental Setup
Results and Discussion
Network Centric Evaluation
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.