Abstract

As assistive robotics has expanded to many task domains, comparing assistive strategies among the varieties of research becomes increasingly difficult. To begin to unify the disparate domains into a more general theory of assistance, we present a definition of assistance, a survey of existing work, and three key design axes that occur in many domains and benefit from the examination of assistance as a whole. We first define an assistance perspective that focuses on understanding a robot that is in control of its actions but subordinate to a user’s goals. Next, we use this perspective to explore design axes that arise from the problem of assistance more generally and explore how these axes have comparable trade-offs across many domains. We investigate how the assistive robot handles other people in the interaction, how the robot design can operate in a variety of action spaces to enact similar goals, and how assistive robots can vary the timing of their actions relative to the user’s behavior. While these axes are by no means comprehensive, we propose them as useful tools for unifying assistance research across domains and as examples of how taking a broader perspective on assistance enables more cross-domain theorizing about assistance.

Highlights

  • Smart wheelchairs navigating through crowded rooms, coaching robots guiding older adults through stroke rehabilitation exercises, robotic arms aiding motor-impaired individuals to eat a meal at a restaurant: these are all examples of research in areas as disparate as intelligent motion planning, rehabilitative medicine, and robotic manipulation that have been independently identified as being able to contribute to the development of robots that can do helpful things for people

  • How does the relationship between a grocery stocking robot and the surrounding customers relate to the relationship between an airport guide robot and the surrounding crowd? Does a robot designed to autonomously declutter a room convey a similar sense of agency as a virtual robot suggesting an optimal ordering in which you should clean your room? Answers to these and similar questions would form a basis that would provide clarity for research in assistive robotics, but are currently difficult to determine due to the disparate nature of assistive robotics

  • We identify a subset of common challenges and develop themes that begin a conversation about how assistance abstracted from specific problem domains and can be used to Helping People Through Space and Time answer questions about assistance generally, thereby benefiting the entire field of assistive robotics

Read more

Summary

INTRODUCTION

Smart wheelchairs navigating through crowded rooms, coaching robots guiding older adults through stroke rehabilitation exercises, robotic arms aiding motor-impaired individuals to eat a meal at a restaurant: these are all examples of research in areas as disparate as intelligent motion planning, rehabilitative medicine, and robotic manipulation that have been independently identified as being able to contribute to the development of robots that can do helpful things for people. Treating assistance as a task-independent perspective on HRI, we can group existing assistive research by its effect on three key axes: people (e.g., who is involved in the system and the roles they play), space (e.g., how the robot’s action affects the task), and time (e.g., when the robot performs its actions during the task). This perspective considers an assistive system as an interaction in which a user and a robot forge a complex, asymmetric relationship guided by the user’s goals. We give a brief synopsis of previous attempts to characterize assistance and assistive robotics, and we give an overview of the remainder of this paper

General Human-Robot Interaction
THE ASSISTANCE PERSPECTIVE
Assistance as a Perspective on
Prior Categorizations of Assistive Robotics
Overview of This Paper
METHODS
Initial Search
Refined Search
Paper Selection
PEOPLE
Terminology
Additional Targets of Assistance
Additional Interactants
Combinations of Roles
Implications
Environment
Human Body
Human Brain
Reactive
Proactive
Simultaneous
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.