Abstract

We estimate the Helmholtz free energy of peptide hydrogen bonds in native protein structures as a function of spatial separation between donor and acceptor atoms. The resulting potential function has a deep narrow well at H-bond contact but bond formation is hindered by a barrier and the net change in free energy is close to zero. The barrier provides a molecular lock mechanism acting as a kinetic trap. Once formed, H-bonds keep protein chains in a precise orientation. However, bond formation requires energy input and opposes protein folding. In contrast, the free energy functions of most side-chain interactions have no energy barriers. They lack spatial precision but free energy differences of contact formation are substantial. These interactions drive folding and stabilize structures but precision is mediated and maintained by H-bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call