Abstract

Aiming at the existing problem of unmanned aerial vehicle (UAV) aerial photography for riders’ helmet wearing detection, a novel aerial remote sensing detection paradigm is proposed by combining super-resolution reconstruction, residual transformer-spatial attention, and you only look once version 5 (YOLOv5) image classifier. Due to its small target size, significant size change, and strong motion blur in UAV aerial images, the helmet detection model for riders has weak generalization ability and low accuracy. First, a ladder-type multi-attention network (LMNet) for target detection is designed to conquer these difficulties. The LMNet enables information interaction and fusion at each stage, fully extracts image features, and minimizes information loss. Second, the Residual Transformer 3D-spatial Attention Module (RT3DsAM) is proposed in this work, which digests information from global data that is important for feature representation and final classification detection. It also builds self-attention and enhances correlation between information. Third, the rider images detected by LMNet are cropped out and reconstructed by the enhanced super-resolution generative adversarial networks (ESRGAN) to restore more realistic texture information and sharp edges. Finally, the reconstructed images of riders are classified by the YOLOv5 classifier. The results of the experiment show that, when compared with the existing methods, our method improves the detection accuracy of riders’ helmets in aerial photography scenes, with the target detection mean average precision (mAP) evaluation indicator reaching 91.67%, and the image classification top1 accuracy (TOP1 ACC) gaining 94.23%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call